(1) A container has 30 gold medals,22 silver medals and 18 bronze medals.if one medal is selected at random from the container, what is the probability that it is not a gold medal.?
A.47**
B.37
C.1135
D.1235
A.47**
B.37
C.1135
D.1235
Solution:The formula for the probability that it is not a gold medal is p(notagoldmedal)=1−p(goldmedal)
so we first compute p(gold medal)=Number of possible outcomeNumber of total outcome=3030+22+18=3070=37Now we proceed top(not a gold medal)=1−37=47
(2) the sum of the first n terms of an A.P is 252. if the first term is -16 and the last term is 72. find the number of terms in the series.
A.7
B.9**
C.6
D.8
A.7
B.9**
C.6
D.8
Solution: The formula for the sum of an A.P involving a last term is sn=n2(a+l)
where a=first term, n=number of terms in the A.P,l=last term and sn=sum of the A.P so sn=252, a=-16,l=72 substituting these values into formula we get
252=n2(−16+72)252=n2(56)252=28nn=9
where a=first term, n=number of terms in the A.P,l=last term and sn=sum of the A.P so sn=252, a=-16,l=72 substituting these values into formula we get
252=n2(−16+72)252=n2(56)252=28nn=9
(3) Factorize completely 4abx−2axy−12b2x+6bxy
A.2x(3b−a)(2b−y)
B.2x(a−3b)(b−2y)
C.2x(2b−a)(3b−y)
D.2x(a−3b)(2b−y)**
A.2x(3b−a)(2b−y)
B.2x(a−3b)(b−2y)
C.2x(2b−a)(3b−y)
D.2x(a−3b)(2b−y)**
Solution: 4abx−2axy−12b2x+6bxy=4abx−12b2x−2axy+6bxy=4bx(a−3b)−2xy(a−3b)=(4bx−2xy)(a−3b)=2x(2b−y)(a−3b)
\
(4) If 92x−127x+1=1 find value of x.
A.2
B.8
C.5**
D.3
A.2
B.8
C.5**
D.3
Solution:
92x−127x+1=1=32(2x−1)33(x+1)=1=2(2x−1)3(x+1)=12(2x−1)=3(x+1)4x−2=3x+34x=3x+5x=5
92x−127x+1=1=32(2x−1)33(x+1)=1=2(2x−1)3(x+1)=12(2x−1)=3(x+1)4x−2=3x+34x=3x+5x=5
(5) find (10.06÷10.042)−1
A.4.42
B.3.14
C.1.53
D.1.43**
A.4.42
B.3.14
C.1.53
D.1.43**
Solution: (10.06÷10.042)−1=(10.06×0.0421)−1=(0.0420.06)−1=(0.7)−1=10.7=1.43
(6) In a class of 40 students,32 offer maths, 24 offer physics and 4 offer neither maths nor physics. How many offer both maths and physics.
A.16
B.4
C.20**
D.8
A.16
B.4
C.20**
D.8
Solution: from the data above,let M=32, P=24, (M∩P)c=4
M∩P=x, n(M)=32−x,n(P)=24−x and
n(M∩P)=32−x+x+24−x+4=40=32+24+4−x=40⇒60−x=40x=20
M∩P=x, n(M)=32−x,n(P)=24−x and
n(M∩P)=32−x+x+24−x+4=40=32+24+4−x=40⇒60−x=40x=20
(7) Given U={Even numbers between 0 and 30}P={Multiples of 6 between 0 and 30}Q={Multiples of 4 between 0 and 30}
find (P∪Q)c
A.{0,2,6,22,26}
B.{2,4,14,22,26}
C.{2,10,14,22,26}**
D.{0,10,14,22,26}
find (P∪Q)c
A.{0,2,6,22,26}
B.{2,4,14,22,26}
C.{2,10,14,22,26}**
D.{0,10,14,22,26}
Solution: U={2,4,6,8,10,12,14,...,30}P={6,12,18,24,30}Q={4,8,12,16,20,24,28}P∪Q={4,6,8,12,16,18,20,24,28,30}(P∪Q)c={2,10,14,22,26}
(8) If N=|35−46−3−5−221|
find |N|
A.91
B.65
C.23
D.17**
find |N|
A.91
B.65
C.23
D.17**
Solution: |N| means we should find N determinants
|N|=3|−3−521|−5|6−5−21|−4|6−3−22|
3[−3(1)−(−5(2)]−5[(6(1)−(−5(−2)]−4[6(2)−(−3(2)]=21+20−24=17
|N|=3|−3−521|−5|6−5−21|−4|6−3−22|
3[−3(1)−(−5(2)]−5[(6(1)−(−5(−2)]−4[6(2)−(−3(2)]=21+20−24=17
(9) The binary operation is defined on the set of integers p and q by p⋆q=pq+p+q. find 2(3⋆4)
A.19
B.38**
C.59
D.67
A.19
B.38**
C.59
D.67
Solution: since p⋆q=pq+p+q then
2(3⋆4)=2(3(4)+3+4))=2(12+7)=38
2(3⋆4)=2(3(4)+3+4))=2(12+7)=38
(10) A bucket is 12cm in diameter at the top, 8cm in diameter at the bottom and 4cm deep. calculate its volume.
A.144πcm3
B.3043πcm3**
C.72πcm3
D.128πcm3
A.144πcm3
B.3043πcm3**
C.72πcm3
D.128πcm3
Solution: A bucket is a frustrum of a cone so we will use the formula for calculating volume of a frustrum.
let R=d2=122=6cm and r=d2=82=4cm
now volume is
Volume=13πs(R2+r2+Rr)where s=slant height=13π4(62+42+6(4))=43π(76)=3043π
let R=d2=122=6cm and r=d2=82=4cm
now volume is
Volume=13πs(R2+r2+Rr)where s=slant height=13π4(62+42+6(4))=43π(76)=3043π
(11) find the number of ways of selecting 8 subjects from 12 subjects for an examination.
A.498
B.496
C.495
D.490
A.498
B.496
C.495
D.490
Solution: using combinatorial analysis
12C8=12!8!(12−8)!=12!8!4!=12×11×10×9×8!8!4!=1188024=495
12C8=12!8!(12−8)!=12!8!4!=12×11×10×9×8!8!4!=1188024=495
(12) Given p=1+√2 and q=1−√2 evaluate p2−q22pq\\
A.−2(2+√2)
B.2(2+√2)
C.−2√2**
D.2√2
A.−2(2+√2)
B.2(2+√2)
C.−2√2**
D.2√2
Solution: (1+√2)2−(1−√2)22(1+√2)(1−√2)=(1+2√2+2)−(3−2√2)2(−1)=1+2√2+2−3+2√2−2=2√2+2√2−2=4√2−2=−2√2
0 Comments
Comments