The Triangular Inequality
Theorem: The triangular inequality states that if $a$ and $b$ are any two real numbers, then $|a+b|\leq{|a|+|b|}$.............(1)
Proof:: To proof the triangular inequality involves four cases and this cases are simply obtained from the order properties of the real number system as follows:
(a) If $a\geq{0}$ and $b\geq{0}$ then $a+b\geq{0}$, so $|a+b|=a+b=|a|+|b|$
(b) If $a\leq{0}$ and $b\leq{0}$ then $a+b\leq{0}$, so $|a+b|=-a+(-b)=|a|+|b|$
(c) If $a\geq{0}$ and $b\leq{0}$ then $a+b=|a|-|b|$
(d) If $a\leq{0}$ and $b\geq{0}$ then $a+b=-|a|+|b|$ then equation (1) holds in either cases.
$|a+b|=|a|-|b|$ if $|a|\geq{|b|}$
and
and
$|b|-|a|$ if $|b|\geq{|a|}$
QED.
In the upcoming lectures i will proof more different cases of the triangular inequality.
Thank you
Mymathware image |
0 Comments
Comments