Find the second derivative of y=3x22x+1

By indices
y=(3x22x+1)12
We use chain rule to evaluate y
Formula dydx=dydu×dudx
Let u=3x22x+1,dudx=6x2
And u12,dydu=12u12
Substitute y,u and their derivatives into the chain rule formula.
dydx=dydu×dudx=12u12×6x=3xu12

dydx=3x(3x22x+1)12.
That is all for the first derivative.
To find the second derivative d2ydx2 of dydx=3x(3x22x+1)12, we use product rule.
Formula for product rule d2ydx2=Vdudx+Udvdx
Let V=3x,dvdx=3,U=(3x22x+1)12,dudx=12(3x22x+1)32

d2ydx2=3x(12(3x22x+1)32)+(3x22x+1)12.3
 =3x2(3x22x+1)32+3(3x22x+1)12

Factor out common factors if you like.