Differentials of Functions
for any function f(x) that is differentiable,we defined y=f(x) so that dydx=f′(x) and the differential is given as dy=f′(x)dx,where the variables dy and dx are called the differentials of f(x)
Examples
Evaluate the differentials of the following functions
(1) f(x)=sinx2 if x=1 and dx=12
(2) f(x)=sin2x if x=π and dx=π100
(3) f(x)=lnx if x=1 and dx=110
(4) f(x)=2x2−3x+5 if x=2 and dx=4
Evaluate the differentials of the following functions
(1) f(x)=sinx2 if x=1 and dx=12
(2) f(x)=sin2x if x=π and dx=π100
(3) f(x)=lnx if x=1 and dx=110
(4) f(x)=2x2−3x+5 if x=2 and dx=4
Solution:
(1) To evaluate the differentials of f(x)=sinx2 we take the derivative of f(x) which is
f′(x)=12cos12use the differential formulady=f′(x)dxdy=12cosx2.12=14cosx2substitute the initial value problemx=1=14cos12=14(0.999)=0.24975
f′(x)=12cos12use the differential formulady=f′(x)dxdy=12cosx2.12=14cosx2substitute the initial value problemx=1=14cos12=14(0.999)=0.24975
(2) to evaluate the differential of f(x)=sin2x, first take the derivative of f(x) and find dy using the formula.
f(x)=sin2xf′(x)=2cos2xnowdy=f′(x)dx,dy=π100dy=2cos2x.π100=2π100cos2xusing the initial value problem,x=π,remember,π=180dy=π100.2cos2π=2π100=π50
f(x)=sin2xf′(x)=2cos2xnowdy=f′(x)dx,dy=π100dy=2cos2x.π100=2π100cos2xusing the initial value problem,x=π,remember,π=180dy=π100.2cos2π=2π100=π50
(3) we take the derivative of f(x)=lnx which is f′(x)=1x if x=1 and dx=110
dy=f′(x)dxdy=1x.110at,x=1dy=110
dy=f′(x)dxdy=1x.110at,x=1dy=110
(4) the derivative of f(x)=2x2−3x+5 is f′(x)=4x−3
dy=f′(x)dxdy=(4x−3).4dy=16x−12,butx=2dy=16(2)−12=32−12=20
dy=f′(x)dxdy=(4x−3).4dy=16x−12,butx=2dy=16(2)−12=32−12=20
0 Comments
Comments