Linear Approximation Of Functions
Given a function f(x),if x=a then the linear approximation of f(x) is given by L(x)=f(a)(xa)+f(a)
Examples
Use Linear Approximation to evaluate the following functions.
(1) f(x)=3x at x=64 to approximate 350
(2) f(x)=lnx at x=1 to approximate f(1.5)

Solution:
(1) f(x)=3x=x13f(x)=13x23=13x23since x=a then a=64,and f(a)=364=4f(a)=13(64)23=148since we have found all the necessary values for the formula,we proceed to substituting them into the formulaL(x)=f(a)(xa)+f(a)L(x)=148(x64)+4L(x)=x486448+4L(x)=x48+83and that's it,now we need to evaluate L(50)L(50)=5048+83=50+12848=3.70833.71Now we approximate L(50) to 3503.68
(2) usingL(x)=f(a)(xa)+f(a)since x=a, f(x)=1x and f(a)=11=1 because a=1f(a)=lln(1)=0L(x)=(1)(x1)+0=x1f(1.5)=L(1.5)=1.51=0.5