Today we are starting a new topic after successfully rounding up the previous topic of logarithm, and i will be starting with the Binary numbers before moving into other forms of number systems in our future lectures.

BINARY NUMBERS
The system of numbers in everyday use is the denary or decimal
system of numbers, using the digits 0 to 9. It has ten different
digits (0,1,2,3,4,5,6,7,8 and 9) and is said to have a radix or
base of 10.
The binary system of numbers has a radix of 2 and uses only
the digits 0 and 1.

Conversion of Binary to Denary

The denary number 234.5 is equivalent to
2×102+3×101+4×100+5×101

i.e. is the sum of terms comprising: (a digit) multiplied by (the
base raised to some power).

   In the binary system of numbers, the base is 2, so 1101.1 is
equivalent to: 1×23+1×22+0×21+1×20+1×21
Thus the denary number equivalent to the binary number
1101.1 is
8+4+0+1+12, that is 13.5.

i.e. 1101.12=13.510, the suffixes 2 and 10 denoting binary and
denary systems of numbers respectively.

Example 1: Convert 110112 to a denary number.
110112=1×24+1×23+0×22+1×21+1×20
=16+8+0+2+1
=2710

Example 2:
Convert 0.10112 to a decimal fraction
0.10112=1×21+0×22+1×23+1×24
=1×12×0×122+123+1×124
=12+18+116
=0.5+0.125+0.0625
=0.687510