Definition


Let A be an associative C-algebra, let . be a norm on the vector C-vector space A, and let :AA, aa be a C-antilinear map. Then (A,.,) is called a C-algebra if (A,.) is complete and we have for all a,bA:
i. a=a (* is an involution)
ii. (ab)=ba
iii. abab (submultiplicativity)
iv. a=a ( is an isometry)
v. aa=a2 (C property)
A norm(not necessarily complete) satisfying(i)-(v) is called a C-norm.


Example

 Let (H,.,.) be a complete Hilbert space be a complex Hilbert space, let A=L(H) be the algebra of bounded linear operators on H. Let . be the operator norm i.e
a:sup Let a^* be the operator adjoint to a, i.e
\langle{ax,y}\rangle=\langle{x,a^*y}\rangle for all
\ xy\in\mathcal{H}
Here axioms i-iv are easily checked.
Using axioms iii and iv and the Cauchy-Schwarz inequality we see
\|a\|^2=\sup\|ax\|^2=\sup_{\|x\|=1}\langle{ax,ax}\rangle
=\sup_{\|x\|=1}\langle{x,a^{*}ax}\rangle


\leq{\sup_{\|x\|=1}}\|x\|.\|a^{*}ax\|
=\|a^{*}a\|\leq{\|a^{*}\|}.\|a\|
by axiom iv
=\|a\|^2

Example
Let X be a locally compact Hausdorff space. Put
 A:=C_0(X):=\{f:X\rightarrow\mathbb{C} continuous for all
\epsilon>0 there exists
K\subset{X} is compact so that for all
x\in{X\backslash{K}}:|f(x)|<\epsilon\}
We C_0(X) the algebra of continuous function varnishing at infinity.
If X is compact then A=C_0(X)=C(X).
All f\in{C_0(X)} are bounded and we may define
 \|f\|:=\sup_{x\in{X}}\|f(x)\|
Moreover let
f^*(x):=\overline{f(x)} Then (C_0(X),\|.\|,*) is a cummutative C^*-algebra.