Verify that $(n!+1,(n+1)!+1)=1$
Let $(n!+1,(n+1)!+1)=d$
Then there exists $(h,k)=1$ such that
$n!+1=dh$.....................(i)
$n!=dh-1$ and
$(n+1)!+1=dk$...............(ii)
From (ii) let
$(n+1)n!+1=dk$
$\Rightarrow{(n+1)(dh-1)}+1=dk$
By expansion of brackets, we get
$ndh-n+dh-1+1=dk$
$ndh-n+dh-dk=0$
$ndh+dh-dk=n$
$d(nh+h-k)=n$
$d[(n+1)h-k)=n$
Divide through by $d$
$h(n+1)-k=\frac{n}{d}$
$\Rightarrow\frac{n!}{d}+\frac{1}{d}=1$
$\Rightarrow{d=1}$.
1 Comments
I may actually have a shorter solution to it.
ReplyDelete(n! + 1 ; (n + 1)! + 1)
= ( n! + 1 ; (n+1)*n! + n + 1 - n )
= ( n! + 1 ; (n+1)(n! + 1) - n )
= ( n! + 1 ; (n+1)(n! + 1) - n - (n!+1)(n+1) )
= ( n! + 1 ; -n )
= ( n! + 1 + (-n)*(n - 1)! ; -n)
= ( 1 ; -n ) = 1
Comments