From our trigonometric identities
$\sec^2{x}=\frac{1}{\cos^2{x}}$
$\tan^2{x}=\frac{\sin^2{x}}{\cos^2{x}}$
Now, $\frac{1}{\cos^2{x}}+\frac{\sin^2{x}}{\cos^2{x}}=3$
$\frac{1+\sin^2{x}}{\cos^{x}}=3$
$\Rightarrow{1+\sin^2{x}}=3\cos^2{x}$
$3\cos^2{x}-\sin^2{x}=1$
$3\cos^2{x}-(1-\cos^2{x})=1$
$3\cos^2{x}-1+\cos^2{x}=1$
$3\cos^2{x}+\cos^2{x}=2$
$4\cos^2{x}=2$
Divide through by 4
$\cos^2{x}=\frac{1}{2}$
$\sqrt{\cos^2{x}}=\sqrt{\frac{1}{2}}$
$\cos{x}=\sqrt{\frac{1}{2}}$
$x=\cos^{-1}(\sqrt{\frac{1}{2}})$
$x=45°$
1 Comments
You made that very heavy going!
ReplyDeleteUse the identity (sec(x))^2=1+(tan(x))^2
So (sec(x))^2+(tan(x))^2=1+2((tan(x))^2)=3
(tan(x))^2=1
tan(x)=±1
x=(90n+45)°, for any integer n
Comments