Find x if sec2x+tan2x=3
From our trigonometric identities
sec2x=1cos2x
tan2x=sin2xcos2x
Now, 1cos2x+sin2xcos2x=3
1+sin2xcosx=3
1+sin2x=3cos2x
3cos2xsin2x=1
3cos2x(1cos2x)=1
3cos2x1+cos2x=1
3cos2x+cos2x=2
4cos2x=2
Divide through by 4
cos2x=12
cos2x=12
cosx=12
x=cos1(12)
x=45°