How do you proof $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$?
It is not always true. To see the clear picture, we solve some clear examples.
Remember, $\sqrt{\frac{a}{b}}$ means "find $a$ divided by $b$ then evaluate the square root".
While $\frac{\sqrt{a}}{\sqrt{b}}$ means "find the square roots of $a$ and $b$ first then divide the result".
To proof our case, we will develop four cases,
Case 1: Let $a,b\in\mathbb{R}^+$ then
$\sqrt{\frac{64}{16}}=\sqrt{4}=2$ and $\frac{\sqrt{64}}{\sqrt{16}}=\frac{8}{4}=2$.
These shows that $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$ is true.
Case 2: Let $a\in\mathbb{R}^-$ and $b\in\mathbb{R}^+$ then $\sqrt{\frac{-64}{16}}=\sqrt{-4}=2i$ and $\frac{\sqrt{-64}}{\sqrt{16}}=\frac{8i}{4}=2i$.
Case 3: $a\in\mathbb{R}^+$ and $b\in\mathbb{R}^-$ then $\sqrt{\frac{64}{-16}}=\sqrt{-4}=2i$ and $\frac{\sqrt{64}}{\sqrt{-16}}=\frac{8}{4i}=-2i$ therefore, it has failed to hold here, $\sqrt{\frac{a}{b}}\neq\frac{\sqrt{a}}{\sqrt{b}}$?
Case 4: $a\in\mathbb{R}^-$ and $b\in\mathbb{R}^-$ then $\sqrt{\frac{-64}{-16}}=\sqrt{4}=2$ and $\frac{\sqrt{-64}}{\sqrt{-16}}=\frac{8i}{4i}=2$. Therefore, $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$ is true.
Subscribe to my telegram channel: t.me/mymathware
3 Comments
\sqrt{-4}=2e^{i\pi(2n+1)/2}=2e^{i\pi n + i\frac{\pi}{2}}=2e^{i\pi n}e^{i\frac{\pi}{2}} = 2(-1)^n i =\pm 2i, \text{not } 2i.
ReplyDeleteYour equations are not displaying maybe you should use the $ for opening and closing tags.
DeleteNice Blog.
ReplyDeleteTop Girls Boarding School in India
Top CBSE Boarding School in India
Top Boarding School in India
Top Coed Boarding School in India
Comments