It says find the minimal eigenvalue of the matrix A2021.
We find the eigenvalue using the determinant for |A−Iλ| where Iλ is an identity λ matrix.
Next
=(2−λ)[(−1−λ)(1−λ)]+0−0
This yields a characteristic polynomial
=(2−λ)(−1+λ2)
Hence, our eigenvalues are
λ1=λ2=1,λ3=−1
min{λi}=−1
And A2021=(−1)2021=−1
0 Comments
Comments