Below is a beautiful proposition on matrix eigenvalues.



It says find the minimal eigenvalue of the matrix A2021.
We find the eigenvalue using the determinant for |AIλ| where Iλ is an identity λ matrix. 


Next




=(2λ)[(1λ)(1λ)]+00
This yields a characteristic polynomial 
=(2λ)(1+λ2)
Hence, our eigenvalues are 
λ1=λ2=1,λ3=1
min{λi}=1
And A2021=(1)2021=1